HBase as primary NoSql Hadoop storage

Three admins once went to noSql bar, but a little while walked away from there as they could not find a table” – says one popular joke. The statement is arguable from my point of view, but it undercover the general idea – differences of approaches of treating the data. Most of developers usually start their career from working with some RDBMS products like Oracle or MSSQL server. These systems keep the data in some normalized format represented by a sets of tables and relations between them. In many cases this model ideally suits to accomplish the data-related requirements of many products. But sometimes such structure brings certain overheads which negatively effects the end performance of the application. In order to overcome these restrictions an alternative NoSQL approach for keeping and managing the data was invented. There are a lot of different implementations of this technique and each of them targets to resolve some individual tasks, but from Hadoop perspective HBase is probably one of the most commonly used NoSQL database which provides a strong and reliable mechanism for managing huge amounts of data across distributed environment. In this article I want to describe the general idea of this product and show some examples of working with it.

Continue reading “HBase as primary NoSql Hadoop storage”

Structuring Hadoop data through Hive and SQL

In this article I would like to start getting you acquainted with the Hadoop services which can heavily simplify the process of working with the data within the cluster. We’ve already played around the fundamental part of Hadoop – HDFS. But as you could have noticed it is really quite complicated to work with the data in such way especially taking into consideration that every new operation upon the data would require another MapReduce job which should be properly implemented, tested, deployed, executed and verified. Besides MapReduce approach follows batch processing model, meanwhile some solutions could relay on the option of real-time data access which is beyond the scope of this framework. In some cases certainly this technique should be applied, for example to implement some complicated operations with data but the most part of scenarios usually relate to some basic and generic operations like searching, grouping or aggregating the information. And in order to simplify such functionality Hadoop community invented several solutions which help end users to get to the higher level of abstraction and to start using more simple mechanisms for querying the data. One of them called Hive.

Continue reading “Structuring Hadoop data through Hive and SQL”

Hadoop security overview

If you ask me what is the post complicated part of Hadoop configuration, I will say that it is security. From early start of development of this product the main efforts were focused on making a stable distributed framework and security was not the priority of that time. The base assumption was that system would work as a part of some trusted network environment and simple security model would be sufficient to cover the requirements of that period. But by the time Hadoop evolved and the problems of more complicated security challenges started to play more and more important role. Especially is became a sharp question once Big Data started to drive into the side cloud computing. So the integration of Kerberos protocol became the first serious step made in this direction. After authentication part logically community started to solve the problems related to authorization. According to basic security model most part of the services worked with custom Access Control Lists (ACL) and the general idea was to localize their management in a single place. Cloudera invented Senrty product and HortonWorks proposed alternative in view of Ranger application. Later on security components were improved with other features like support of encryption, protection of RESTful endpoints, integration with Active Directory and other. In this article I want to give the general overview of primary parts of Hadoop security model.

Continue reading “Hadoop security overview”

Exploring Hadoop file system

HDFS is a core and fundamental component of Hadoop. This file system is oriented on handling huge amounts of data. From first glance you may not notice much differences from usual Linux file system as it follows lots of POSIX specifications. But behind the scene HDFS does a lot of extra work to provide stable and quick access to the data which is stored across different machines of distributed cluster. It is indeed a great data management mechanism which takes all responsibility for building most optimal data-flows according to the network topology of the cluster and which performs automatic handling of critical situations related to the breaks in hardware. In this article I’ll try to give a general overview of Hadoop file system and show some common techniques of working with the data inside it.

Continue reading “Exploring Hadoop file system”

Counting and sorting words in Hadoop

At this stage you probably have a general idea of what Hadoop is in technical scene. But why do we really need such a huge and complicated platform for doing such simple things like searching, counting or sorting our data. According to the research provided by Cisco last year annual global IP traffic will reach 2.3 zettabytes per year by 2020. Another research forecast performed by International Data Corporation few years ago stated that up to 2020 people will have to operate with 44 zettabytes of data. Can we really handle such capacities with our current hardware and algorithms? Hadoop is probably the best attempt to handle that problem at this time.

There is quite an interesting competition which exists in the world of Big Data called Terasort. It appeared in 2008 with the general idea to generate, sort and validate 1TB of data. At that period the result was 3 minute 48 seconds on Hadoop cluster of 910 nodes. By the time the amount of data increased to 100TB and just few month ago we got a new record of sorting 100TB of data for 98.8 seconds in the cluster of 512 nodes. The actual results are available Sort Benchmark Home page.

Continue reading “Counting and sorting words in Hadoop”

Playing in Sandbox

If you ask me what is the most complicated part of Hadoop, I will tell you that it is configuration. It’s really a nightmare to keep in sync all these parts and their dependencies. You have to know and properly configure hundreds of different properties per each Hadoop daemon. At some stage you start to update of one part of your cluster and it breaks another. You fix it and this fix breaks something else. As a result instead of working with your data and writing your code you spend days in searching correct patches and configurations for your daemons.

Continue reading “Playing in Sandbox”

First dive into Hadoop

In my first article I want to share my experience with the steps I did to start working the world of Big Data. As a guy from .NET stack it was really quite challenging for me to understand what technologies I should start studying for getting myself into the world of Hadoop and to identify these first practical steps which need to be done to start working in this realm.

Continue reading “First dive into Hadoop”